Tissue-specific patterns of allelically-skewed DNA methylation

نویسندگان

  • Sarah J. Marzi
  • Emma L. Meaburn
  • Emma L. Dempster
  • Katie Lunnon
  • Jose L. Paya-Cano
  • Rebecca G. Smith
  • Manuela Volta
  • Claire Troakes
  • Leonard C. Schalkwyk
  • Jonathan Mill
چکیده

While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of epigenetic changes of liver tissue induced by oral administration of Titanium dioxide nanoparticles and possible protective role of Nigella Sativa oil, in adult male albino rats

Objective (s): Titanium dioxide nanoparticles (TiO2 NPs) have been recognized as biologically inert material and have been used in a multitude of applications. Nevertheless, the negative impact on the human health is not yet well understood. Aim of the work: The study attempted to evaluate the epigenetic changes of the genome, in the form of DNA methylation in liver tissue samples, resulting fr...

متن کامل

اپی‌ژنتیک سرطان پستان: مقاله مروری

Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...

متن کامل

Involvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis

DNA methylation as epigenetic mark plays a key role in normal differential and developmental processes as well as in dynamic gene regulation at the genomic level. To assess DNA methylation pattern in different developmental stages of Aeluropus littoralis, methylation sensitive amplified polymorphism (MSAP) was used. Methylation and demethylation status at the CCGG recognition site were...

متن کامل

مروری بر متیلاسیون DNA و نقش آن در توموری شدن سلول های تیروئیدی

Epigenetic modification is one of the effective factors in tumorigenesis. Epigenetic processes, especially aberrant DNA methylation, play important role in thyroid cancer, and many tumor suppressor genes including PTEN, RASSF1A and TIMP3 are aberrantly methylated and silenced in thyroid cancer. Because of the specified pattern of DNA methylation in various tumor cells, it is suggested that thes...

متن کامل

The role and importance of DNA methylation in spermatogenesis process

Background: DNA methylation is one of the epigenetic marks that are created by de novo DNA methylation and be maintained through cell division. This process is catalyzed by DNA methyltransferases. DNA methylation establishment in germ line is important, since they have the potential to regulate gene expression in offspring and improper DNA methylation patterns in germ lines has serious conseque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016